-continued

```
<210> SEQ ID NO 5
<211> LENGTH: 23
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: forward primer sequence
<400> SEQUENCE: 5
tetgteteet teetetteet aca
                                                                        23
<210> SEQ ID NO 6
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: reverse primer sequence
<400> SEQUENCE: 6
aaccagccct gtcgtctct
                                                                        19
<210> SEQ ID NO 7
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: forward primer sequence
<400> SEQUENCE: 7
aatgatacgg cgaccaccga
                                                                        20
<210> SEQ ID NO 8
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: reverse primer sequence
<400> SEQUENCE: 8
                                                                        21
caagcagaag acggcatacg a
```

1.-38. (canceled)

- **39**. A method for detecting mutations from exposure to a substance, the method comprising:
 - (a) preparing a sequencing library from a sample comprising a plurality of double-stranded DNA molecules from a patient exposed to the substance, wherein preparing the sequencing library comprises ligating cypher polynucleotides to the double-stranded DNA molecules to form double-stranded cypher-target nucleic acid complexes, wherein the cypher polynucleotides comprise identifier tags selected from a plurality of distinct identifier tag sequences;
 - (b) sequencing first and second strands of the cyphertarget nucleic acid complexes to produce a plurality of first-strand sequencing reads and a plurality of secondstrand sequencing reads;
 - (c) for each cypher-target nucleic acid complex among a plurality of the cypher-target nucleic acid complexes, comparing the first-strand sequencing reads with the second-strand sequencing reads to identify nucleotides in the first strand that have a corresponding complementary nucleotide in the second strand;
- (d) detecting a mutation from exposure to the substance by analyzing an error-corrected sequence generated from the first strand sequencing reads and second strand sequencing reads for each of the cypher-target nucleic acid complexes among a plurality of the cypher-target nucleic acid complexes; and comparing the error-corrected sequences to a reference sequence to identify one or more of a mutation, a genomic distribution of mutations, a mutation frequency, sequence heterogeneity, or DNA damage.
- **40**. The method of claim **39**, wherein the sample is derived from a human.
- **41**. The method of claim **39**, wherein prior to preparing the sequencing library, the method further comprises exposing the patient to the substance.
- **42**. The method of claim **41**, wherein prior to exposing the patient to the substance, the patient comprises a normal tissue.
- **43**. The method of claim **39**, wherein the sample comprises a blood sample.
- **44**. The method of claim **39**, wherein the identifier tag sequences comprise random or partially random sequences.